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Comparison of Short Read De Novo Alignment Algorithms

Abstract

The objective of this paper is to survey the algorithms used for de novo alignment of short read data. 
Since the quality of the sequence bases which are aligned is important, this paper starts by comparing 
conventional sequencing methods and next-generation sequencing platforms. Next-generation 
sequencing poses new challenges to the bioinformatics community. A description of several de novo 
alignment algorithms is provided, after which there is a discussion about their differences in approach 
and whether or not the programs provide solutions to mitigate the disadvantages of using next-
generation sequencing technology. From here, this paper describes a suggested implementation of a de 
novo alignment algorithm building upon the successful principles of the short-read de novo aligners 
surveyed.

Conventional Sequencing

There are three main approaches to conventional sequencing. Some approaches are similar to each 
other and some are very different. However, all of these conventional sequencing methods share certain 
properties with their output.

Hierarchical Sequencing [1]

The first sequencing method is called “hierarchical sequencing,” and it was the sequencing method of 
choice for the Human Genome Project. Hierarchical sequencing involves cutting genomic DNA into 
~150Mb pieces and inserting them into BAC vectors. These BAC vectors are then transformed into E. 
Coli, replicated, and stored. The BAC inserts are then isolated, and each 150Mb fragment is mapped 
and ordered (“golden tiling path”). The “golden tiling path” is again randomly sheared into even 
smaller pieces. Each piece is cloned into a plasmid and sequenced on both strands. Contigs are now 
created with the sequence data and the genome is then assembled (with about 8x coverage).

Shotgun Sequencing [1]

The second sequencing method is called “shotgun sequencing.” This method was used by Celera in 
their effort to sequence and assemble the human genome. This method is known to be great for small 
genomes (such as that of prokaryotes) which do not contain too many repetitive sequences. The 
shotgun sequencing approach basically cuts out the use of BACs and goes right into the step of 
shearing DNA into random fragments and cloning them into plasmids (for both strands). From here, 
contigs are assembled and aligned. Omitting the BAC step makes this method more prone to errors. 
Since the chromosomal location of each BAC is known, there are not as many truly random pieces to 
assemble with the hierarchical method. “For example, if a 500 kb portion of a chromosome is 
duplicated and each duplication is cut into 2kb fragments, then it would be difficult to determine where 
a particular 2 kb piece should be located in the finished sequence since it occurs twice. You might 



think, 'who cares since they're duplicates?' But duplications seldom retain their original sequences; they 
tend to drift over time. So a small region may be retained while other parts may mutate. This might  
create overlapping sequences for small pieces that are located several hundred kb apart on the 
chromosome” [1]. It seems like another drawback from a straight shotgun sequencing approach is 
obtaining false positive alignments by concatenating two portions of the genome hundreds of base pairs 
apart.

Sanger Sequencing [6]

Sanger sequencing is another sequencing method. Sanger uses a special type of nucleotide in addition 
to normal nucleotides (ddNTP). These nucleotides have a hydrogen group where the hydroxyl group 
should be on the 3' end. This prevents phosphodiester bonds from forming and terminates the DNA 
chain. First, the DNA is denatured into two separate strands with heat and a primer is then annealed to 
one of the template strands. These primers can be specially constructed to bind to special parts of the 
template strand, giving the ability to sequence a region of interest. The primer or the nucleotide is  
fluorescently labeled so that they can be identified on a gel. The solution is divided into 4 tubes, A, C, 
T, and G, and each tube is filled with all four DNA nucleotides along with its corresponding ddNTP. 
Since the ddNTPs are randomly integrated, the fragments are all different sizes. However, all of the 
fragments have the same starting position. After this process, the DNA is denatured and run on a gel. 
Sanger sequencing produces reads up to 1000 bases long and usually have about 10x coverage.

Synopsis of Conventional Sequencing Methods

In a nutshell, the hierarchical approach to sequencing is more time consuming and expensive compared 
to the shotgun approach. However, the hierarchical approach method has its advantages in that the 
sequence data is less prone to producing inaccurate assemblies. Sanger sequencing does not produce 
reads as long as that of hierarchical or shotgun sequencing. Hierarchical and shotgun sequencing have 
about 8x coverage and Sanger sequencing has about 10x coverage—when it comes to coverage, they 
do not differ by much.

Next-generation Sequencing Methods

In modern times, many other methods have been developed to generate sequence data. In many ways, 
they are more advanced than the classical sequencing methods mentioned above. Instead of outlining 
how each platform works step-by-step as for conventional sequencing, only essential properties of 
these platforms will be covered. All of the below methods are considered next-generation sequencing 
platforms.

I  llumina's HiSeq 2000   [7]

Illumina's HiSeq 2000 machine can produce 100 bp read lengths with 30x coverage and a relatively 
low error rate. Illumina technology is a form of flourescently labeled sequence technology. On the low 
end, it can generate up to 35 GB of data with reads of 35 bases in length. On the high end, it can 
generate up to 200 GB of data with reads of 100 bases in length. The HiSeq provides about 30x 
coverage. The HiSeq is also capable of multiplexing samples. This expands the type of experiments 
that can be done with the instrument and potentially adds more complexities to the sequence data.



Roche's 454 [8] [20]

Roche's 454 machine has longer read lengths than other methods. This mitigates the difficulty of 
mapping repetitive regions. However, these longer reads do not come without high error rates 
(especially in homo-polymer repeats). 454 has been used to do de novo alignment of bacterial and 
insect genomes. The 454 instrument is a parallelized version of pyro-sequencing technology. The 
instrument generates about .5 GB of data with read lengths of about 400 bases.

Life Technology's SOLiD 4 [9]

Life Technology's SOLiD can produce between 35 and 50 base pairs for each read. SOLiD has two-
base encoding which provides a form of error correction. SOLiD sequences by a process of ligation. 
The instrument generates about 35 GB of data on the low end with reads of about 35 bases in length. 
On the high end, it can generate about 100GB of data with reads of up to 50 bases in length. SOLiD 
provides about 15x coverage. SOLiD can also multiplex data (up to 1,536 per run).

PacBio RS [19]

Pacific Biosystems is a long awaited technology. PacBio's machines have the ability to go out to  1000 
base pairs. However, it is important to note that this technology has the highest error rate of all of the 
methods [20]. This technology seems to be comparable to Sanger sequencing in terms of read length. 
Although little information is currently available about the specifics of this instrument, this technology 
will likely play a large role in the future of next-gen sequencing.

Summary Table of Next-gen Sequencing Data

Platform Mate-Pair Throughput 
(GB)

Read 
Lengths (bp)

Run-Time % Data 
>Q30

Coverage

Illumina 
HiSeq 2000

no 25-35 GB 1x35 1.5 Days >90% 30x

yes 150-200 GB 2x100 8 Days >80% 30x

Life SOLiD 
4

no 25-35 GB 1x35 3.5-4.5 Days 80% 15x

yes 80-100 GB 2x50 12-16 Days 80% 15x

Roche 454 N/A ~0.5 GB 400 ~1 Day 40%-60% N/A

PacBio RS N/A N/A ~1000 N/A N/A N/A
*Please note that this table contains data about the low-end and high-end configurations for the 
Illumina and Life Technologies platforms. This is why there are two rows of data for these and not the 
others [7] [8] [9] [19] [20].

Dr. Michael L. Metzker has published an informative summary table about some very similar next-gen 
sequencing platforms in his paper, “Sequencing technologies — the next generation,” which was 
published in Nature. He provides some of the same metrics provided in the table above about these 
similar instruments and also notes the advantages and disadvantages of each platform [20].



Synopsis of Next-gen Sequencing Methods

When it comes to the most accurate instrument, it looks like SOLiD wins the contest with 99.49% 
accuracy1 [9]. The Pacific Biosystems machine blows everything else out of the water when it comes to 
read length—PacBio RS reads are 4 to 10 times longer than that of other instruments. However, it has 
the lowest accuracy rates [20]. The Hiseq provides the most coverage out of the instruments, and it also 
has the highest throughput [9][7]. The HiSeq 2000 and SOLiD both have the ability to mate-pair which 
is a big advantage. Dr. Micheal Brudno from the University of Toronto has stated, “For handling 
alignment gaps the use of mate pairs is critical: if the alignment gap is supported by mate-pair data  
where one of the pair-ends does not map, it is possible to do de novo assembly on just the small set of 
reads to recover the polymorphic region.” [10] The ability to generate mate-pair reads already gives the 

1 Please refer to the Applied Biosystems website. There is a specification sheet available for download that contains this  
data.



HiSeq 2000 and SOLiD an advantage over the other platforms for de novo sequencing. The HiSeq 
2000 provides the highest number of quality reads. This is an important factor to consider as having 
more high quality data in a short-read dataset makes alignment substantially easier [10]. Unfortunately,  
although 454 generates longer read lengths, it comparatively does not come up to par in terms of 
throughput or bases passed filter. Based on the information above, the HiSeq 2000 or SOLiD are the 
best choices for generating short-read data. However, 454 is usually the sequencing method of choice 
for researchers interested in de novo alignment (traditionally chosen for de novo alignments due to the 
longer read lengths). In the future, the PacBio RS is going to be a formidable competitor for the 454 
machine.

In many ways, next-generation sequencing is a blessing. It drives down the cost per base of sequencing 
and generates magnitudes of more data than conventional sequencing would. However, this technology 
does pose new hurdles for the scientific community. These machines have the capability to generate 
such a high magnitude of data that it is difficult to handle all of it! Since all of these technologies  
produce short reads, it is difficult to deal with the reads that align to repetitive regions of a genome. 
Another pain point of next-generation sequencing is that these platforms are more prone to error than 
conventional sequencing.

In the end, no matter what sequencing method one chooses to use, conventional or next-generation, the 
output is sequence data. The overwhelming majority of de novo aligners have been written for data 
output by the Illumina, Sanger, and 454 platform. [22]. 

Overview of De Novo Alignment Algorithms for Conventional Sequencing Data

The de facto standard approach for de novo alignment has changed over the years. Traditionally, there 
were genome assemblers created to assemble Sanger sequencing data and data from Celera. At the 
heart of these assembly techniques, the core algorithm is as simple as overlapping similar reads into 
progressively longer sequences until the entire genome is assembled. This is called the layout-overlap-
consensus method. It may be interesting to examine two famous genome assemblers named Phrap and 
TIGR to illustrate the underlying simplicity of these techniques (although they may seem quite 
involved on the surface).

Phrap [2] [3]

Phrap is a very popular assembly program. It applies the simple core algorithm explained above, but it  
also performs a few additional steps that make its assemblies great. Dr. Eric Roberts, a computer 
science professor at Stanford University has summarized the steps in the Phrap algorithm: 

1. Trim any homopolymer runs at the end of reads and construct read complements.
2. Find pairs of reads with matching words and eliminate any exact duplicate reads. Run swat 

comparisons of pairs of reads which have matching words and compute a swat score. 
3. Find probable vector matches and mark them so that they are not used in the assembly. 
4. “Find near duplicate reads.”
5. “Find reads with self-matches.”
6. “Find matching read pairs that don't have confident matching segments.”
7. Use pairwise matches to identify confirmed parts of reads and use these to compute revised 

quality values. 
8. Compute LLR scores for each match (this is based on the qualities of the sequence bases). 
9. “Find the best alignment for each matching pair of reads that have more than one significant 



alignment in a given region” (essentially the highest LLR-scores among several overlapping 
reads). 

10. “Identify probable chimeric and deletion reads.”
11. Construct contig layouts using consistent pairwise matches in order of decreasing score. 
12. “Construct contig sequence as a mosiac of the highest quality parts of the reads.”
13. Align reads to contig and tabulate inconsistencies and adjust the LLR-scores of the contig 

sequence.

TIGR [4]

TIGR compares fragments based on oligonucleotide content before attempting assembly. This 
eliminates the need for a more careful comparison between the majority of fragment pairs, which in 
turn reduces the amount of time a computer takes to assemble the data. The algorithm can be 
condensed into about seven key steps:

1. “Perform pairwise fragment comparisons for the entire dataset to generate a list of potential 
fragment overlaps.”

2. “Use the distribution of the number of potential overlaps for each fragment to label fragments 
as a repeat or a nonrepeat sequence.”

3. Start with a nonrepeat sequence as the initial assembly seed or a repeat sequence if no nonrepeat 
sequences are left (“if no more sequence fragments are available then the program quits”). 

4. Use potential overlap list to attempt merges between the assembly at hand and nonrepeat 
fragments. 

5. “When no potential overlaps with nonrepeat sequence fragments remain for the current 
assembly, increase the stringency of the match criteria and enforce clone length constraints 
when attempting to merge with repeat fragments.”

6. “If due to a merge with a repeat sequence, a nonrepeat sequence is added to the potential 
overlap list.” At this point it would loop back to step 4. 

7. “When there are no sequence fragments left on the current potential overlap list, output 
information about the current assembly and return to step 3.” This process is essentially rinsed 
and repeated until a full assembly is output.

Synopsis of De Novo Alignment Algorithms for Conventional Sequencing Data

Phrap makes it a point to trim reads before assembly where as TIGR does an initial pass to justify not 
doing a very careful assembly (and optimize for speed). Phrap also actively looks for and removes 
duplicate reads as well as reads that look like they may have vector sequence. Also, unlike TIGR, Phrap 
directly takes read quality into account. TIGR and Phrap both revolve around a pairwise alignment 
method.

Overview of De Novo Alignment Algorithms for Next-gen Sequencing Data

Even though the layout-overlap-consensus approach of assembling a genome is conceptually simple, it  
can actually be a difficult task to complete with next-generation sequencing data. One of the main 
issues is that these older assemblers are difficult to scale to large sequence datasets [12]. Short-read 
sequence datasets need deeper coverage to be considered equivalent to traditional Sanger reads. The 
volume of these short read datasets make using the layout-overlap-consensus method very 
computationally expensive. As this is the case, some prefer a different approach which uses De Bruijn 
graphs. Many of today's most frequently used aligners use the De Bruijn method as it has been proven 



to be faster and more efficient for de novo assembly of short-reads. [11]

Velvet [11]

Velvet is a very popular de novo aligner for short-read sequence data. It is generally used to de novo 
align genomes of all sizes, but it is able to handle larger genomes especially well. “Velvet has already 
proved successful in removing errors and isolating long unique regions from experimental datasets: a 
human BAC and Streptococcus Suis” [11]. The algorithm consists of two main steps: 

1. First, take the sequence data and create a De Bruijn graph using k-mers. The k-mer variable is 
important as it determines a balance between sensitivity and specificity (the lower the k-mer 
size compared to the read, the more “connective” the De Bruijn graph is). The De Bruijn graph 
is then hashed according to the word length.

2. After the graph has been created and the reads hashed, errors are removed. The two types of 
errors that are removed are “tips” and “bubbles.” Tips are low quality read ends which do not 
overlap with other reads and bubbles constitute errors in the middle of a long read or two 
erroneous read ends overlapping. Low coverage nodes which have not been associated with any 
contigs are removed. However, dubious overlaps (a result of bubble errors) are conserved and 
remapped. This alternative data structure is important as it helps to quickly eliminate errors  
without sacrificing low coverage regions—this helps maintain the integrity of the De Bruijn 
graph. Velvet is ideal for reads between 25 and 50 base pairs. 



Euler [13]

Euler-SR is another popular short-read de novo aligner. Like Velvet, Euler-SR also uses De Bruijn 
graphs. Euler-SR is especially designed to handle mate-pair reads and error-prone reads. The Euler-SR 
algorithm can be summarized in three steps: 

1. Detect accurate read prefixes and correct errors within them using frequent k-mers. Since 
efficiency of an alignment algorithm deteriorates as the frequency of errors increases, an effort 
is made to rid of as many as possible. The goal is to attain a set of near-perfect reads.

2. Construct a repeat graph on error corrected prefixes using k-mers. “The key observation in the 
Eulerian assembly is that the repeat graph of a genome can be approximated by the repeat graph 
of reads and thus may be constructed from reads alone.” This means that if the repeat graph of a 



genome is known, it is possible to correct errors in a read by mapping the read to a path in the 
repeat graph and substituting the read by the path. The De Bruijn graphs tend to get three types 
of errors: 
1. bulges – reads with an error or a SNP in the middle.
2. sinks – reads with errors at the end of the read.
3. chimeric reads – reads that transform the sequence in one end of the read to that of a distant 

part of the genome which creates a connection to an unrelated contig. All three of these 
error categories are removed. 

3. Simplify the repeat graph after transforming mate-pairs into mate-reads. A set of mate-pairs are 
usually in the order of read1+GAP+read2. Euler takes this and uses the repeat graph to 
transform it to read1+SEQUENCE+read2.

Minimus [14]

There is a de novo aligner named Minimus. It is part of the AMOS (“A Modular, Open Source whole 
genome assembler”) package [16]. It is better suited for smaller datasets although it can be scaled to 
work with large datasets as well. It is very stringent, so larger datasets tend to end up being highly 
fragmented. “...The reason for this fragmentation is the higher density of repeats...Eukaryotic genomes 
often contain high-copy repeats that disrupt the assembly process, even within the range of a BAC 
insert” [14]. It is generally recommended that execution be followed by other processing steps like 
scaffolding [17]. Minimus output generally has a low error rate, but the main selling point for Minimus 
is that it does not mis-assemble repetitive regions of the genome [15]. If one is using Minimus for a 
small dataset, it can be faster and more flexible than many of the existing tools, unless there are a high 
number of repetitive elements. “We compared Minimus to phrap on two median-sized assembly tasks, 
BAC clones and bacterial genomes, and found that Minimus is able to perform such assemblies more 
efficiently and more accurately than phrap, at the cost of producing smaller contigs” [14]. Interestingly,  
Minimus uses the traditional layout-overlap-consensus approach. However, it still uses a graphing 
technique to help assemble reads. The algorithm is as follows:

1. Shotgun reads are loaded into the AMOS databank (using the API they provide).
2. A hash-overlap program calculates the pairwise alignments between the input reads.
3. After the overlaps are determined, a graph is constructed by another program called the 

Unitigger. “The overlap graph contains a node for each shotgun read, and an edge connects two 
nodes if the corresponding reads overlap.” 

4. “The unitigger then uses several reduction steps to simplify this graph, and generate a set of 
unitigs”

5. Removal of substrings (reads that are completely contained inside another are removed).
6. The next step is called Transitive reduction. “For any set of three reads (A, B, and C), if the 

overlap between A and C can be inferred from the overlaps between reads A and B, and B and 
C, this overlap (i.e. the edge corresponding to this overlap) is removed from the graph.”

7. Unique-join collapsing. “Every simple path in the graph (paths that contain no branches, i.e. all 
the nodes have in- and out-degrees equal to 1) are collapsed into a single vertex. Each such 
vertex represents an individual unitig.”

8. Next comes the consensus stage. A full multiple alignment is constructed from the unitig reads 
using the approximate placement of the reads inferred from the overlap information as a guide.



ABySS [5]

Another de novo aligner is called ABySS. ABySS is designed to de novo align genomes about 100Mb 
in size and is specifically intended for mate-pair experiments. The algorithm is as follows (summarized 
from a visual on the website) [5]: 

1. Partition read space. “Distribute K-mers and their reverse-complements.”
2. “Adjacency Generation.” Each k-mer can have up to eight extensions and each node announces 

the list of k-mers that it has to the nodes that hold their possible extensions. Each node records 
if they are any extensions of the k-mers that it stores. This forms adjacency information for k-
mers over a distributed De Bruijn graph. 

3. “Trimming.” Data sometimes has experimental noise which would show up as false branches 
on the De Bruijn graph. This noise would cause branches of length k-1 or less. Read errors can 
be filtered by removing these sort of branches. Trimming prevents the later assembly step to 
come to a premature stop due to read errors. 

4. “Bubble Popping.” As mentioned with the other methods that use de brujin graphs, read errors 
and SNPs cause bubbles of length 2k-1. ABySS pops these bubbles by removing either of the 
two branches. If a complex bubble forms, such as when multiple bubbles intersect, the bubble 
popping step either creates dead branches or reduces the bubbles orders by one. ABySS records 
these popped bubbles in a separate outfile for later examination. 

5. “Assembly – SET.” The De Bruijn graph is analyzed for contig extension ambiguities. “If there 
is a multiplicity in the inbound and outbound contig extensions, then contig growth is 
terminated.” The SET assembly step then concatenates the remaining connected nodes in the De 



Bruijn graph, creating independent contigs that overlap by no more than k-1 bases. 
6. “Assembly – PET.” “After SET assembly, the reads are aligned to contigs. Using reads that hit 

the same contig, empirical fragment size distributions are calculated. Using reads that hit  
multiple contigs, inter-contig distances are inferred with a maximum likelihood estimator.  
Contigs with coherent and unambiguous distances are then joined.”

Synopsis of De Novo Alignment Algorithms for Next-gen Sequencing Data

The majority of these methods all use De Bruijn graphs to connect reads. Although conceptually more 
complex than the layout-consensus-overlap approach, this is actually a very reasonable way of going 
about connecting reads since it is computationally inexpensive and errors can be easily identified and 
removed. AByss is merciless in the way it eliminates bubble errors compared to Euler and Velvet as it  
just seems to randomly pick one to rid of. Although Velvet and AByss can both handle mate-pair data, 
it seems like Euler is very much specifically designed to handle mate-pair reads. Velvet is special in  
that it hashes its De Bruijn graph according to word length; this may be computationally expensive but 
is still less computationally expensive than doing a pairwise alignment [11]. Euler and ABySS both 
make an effort to treat the read data before analyzing it. The Velvet algorithm does not mention 
anything about trimming or error correcting reads (it lets the error removal step of the De Bruijn graph 



clean out the bad data), and Minimus makes it a point to keep read trimming separate from the 
alignment—the idea is that the definition of a “bad” read depends on a number of factors and to be 
truly accurate read corrections must be done independently of the alignment program [14]. 

Discussion

Dr. Andreas Sundquist, a bioinformatics expert from Stanford University has stated, “Which alignment 
algorithm you should use depends on many factors: 1) the sequencing technology, 2) read length, 3) 
number of reads and available compute resources, 4) sensitivity/scoring requirements. Unfortunately, 
there is not an aligner available that would do well in every situation.” [10].  Dr. Sundquist has also 
said, “Similar to the choice of alignment algorithm, in choosing an assembly algorithm we must 
consider the underlying sequencing technology, its read lengths, whether we have paired reads, the 
overall sequencing protocol, and the size of the genome being assembled.” [10] This is a fantastic 
survey of the proper considerations to make when working with genomic data. To add to this comment, 
the size of the read lengths and the size of the genome are the most important considerations in a de 
novo alignment algorithm next to the sequencing platform that was used. In general, it looks as if the 
conventional approach is better for longer reads and the De Bruijn approach is better suited for short-
read data. Although there are not any official rules, it is clear that certain de novo alignment programs 
are usually used to align genomes of a certain size. It seems like Minimus is better suited for smaller 
genomes without too many repetitive regions, Velvet and Euler are generally used for genomes of all  
sizes (although Euler needs to have mate-pair data and Velvet handles larger genomes especially well),  
and ABySS is best suited for genomes of about 100Mb in size.

The layout-overlap-consensus approach is great for reads created via a conventional sequencing 
method. This greedy algorithmic approach these de novo aligners take is justified because the sequence 
data per read is more accurate and the overlaps between reads is much larger than that of short-reads. 
Since only local information is considered, repetitive elements can confuse the aligner and cause mis-
assemblies [18] . If configured properly, this approach can work well for short-read data as well (as 
shown by Minimus) [14]. However, like the rest of the programs that use the layout-overlap-consensus 
approach, Minimus cannot handle repetitive elements as elegantly as the programs that use the De 
Bruijn approach can. This is a major drawback as it is one of the chief problems posed by short-read 
data. In a sense, Minimus is a step behind Phrap and TIGR as it completely relies on the user to feed it 
“good” data where as Phrap and TIGR make an effort to eliminate “bad” reads. However, Minimus 
does deal with the problem of having large datasets by organizing the data into a data bank using the 
AMOS api.

The De Bruijn approach has its own merits in that it can be significantly cheaper (computationally)  
than pairwise alignments, and it is easy to identify and eliminate what could be “bad” reads. This 
method is specifically designed for short-reads but can also be applied to longer reads. De Bruijn 
graphs work great with single-read datasets, but it is clear that they can perform much better with mate-
paired datasets due to the additional information the aligners can extract and use (insert sizes). The De 
Bruijn approach takes care of the three major short read sequencing problems  mentioned earlier—it is  
orders of magnitude faster than comparing every read to every other read, solving the problem of 
having very large datasets. Pevzner et al. are in favor of abandoning the overlap-layout-consensus 
approach and have stated that, “EULER, in contrast to the CELERA assembler, does not mask such 
repeats but uses them instead as a powerful fragment assembly tool.” [23]. Euler has showed us that 
there is an elegant way to handle repeats, solving the repetitive element problem. Euler has also shown 
us that it is possible to correct sequencing errors before alignment (although not all of the next-
generation de novo aligners do this), solving the problem of filtering out or correcting poor reads. 



Taking all of this into consideration, it seems De Bruijn graphs tackle all of the problems posed by 
next-generation sequencing data. The only problem it may not truly tackle is that of data quality.  
However, this is ultimately determined by the sequencing platform chosen and the treatment of the data  
thereafter.

After examining the properties of some sequencing platforms and of some de novo aligners, it does not 
seem like there is as big of an advantage to having longer reads as there once was. Although longer, 
more accurate reads make de novo alignment a much easier task no matter which sequencing method is  
chosen, there seem to be some very respectable short read assemblers available which provide solutions 
to the problems posed by next-gen sequencing. Longer reads (from next-generation sequencers) tend to 
have higher error rates, and this can make assembly more difficult without proper coverage. Plus, if a 
high-throughput dataset is mate-paired, it can overcome the shortcoming of lacking longer reads. 
Chaisson et al. ask, “Does read length really matter?” The finding of that study (which used mate-
paired data) is that “...the assembly hardly improves after the read length exceeds 35 nt” [13]. Based on 
this conclusion, the HiSeq 2000 and SOLiD should be the preferred sequencing method for de novo 
alignments due to the high-magnitude of passed filter data and high coverage. What was once posed a 
challenge for the bioinformatics community (large short-read datasets) can now be viewed as an 
advantage. 

A Suggested Approach for a Custom Short-read De Novo Aligner

As Dr. Sunquist mentioned, there is not an aligner that can do well in every situation. This being the 
case, bioinformatics scientists should first focus on a target genome size and then focus on writing 
algorithms optimizing on speed and efficiency rather than accuracy (which will come naturally through 
inputting good data). Dr. Sundquist has also said, “The additional longrange information for a de novo 
assembler is invaluable in avoiding misassemblies in repetitive regions. Algorithms that use mate-pairs  
will need to know the insert sizes of the read pairs, and oftentimes it’s beneficial to have several 
different insert sizes: smaller ones to help assemble local regions, and larger ones to help disambiguate 
large, repetitive structures” [10]. Based on the invaluable advantages paired-end data provides, 
especially for de novo alignment, I would strongly suggest the input datasets be mate-paired although it 
would not be a requirement.

Michael Schatz et al. say, “Assemblers primarily focus on correcting errors, reconstructing 
unambiguous regions, and resolving short repeats. These assemblers have successfully assembled small 
genomes from short reads, but have had limited success scaling to larger mammalian-sized genomes, in 
part, because they require constructing and manipulating graphs far larger than can fit into memory” 
[12]. The primary cause of memory inefficiency in De Bruijn graphs is due to erroneous read data 
(discrepancy between bases will cause the graph to add additional branches). Looking into the future, 
these next-generation sequencing companies are probably going to work on producing more data with 
better quality as well as making the instruments more accurate. Although read quality is an important  
factor in de novo alignment algorithm efficiency and speed, this really depends on the sequencing 
method that was used.

After choosing a suitable sequencing platform, the sequence data to be aligned needs to be of as high 
quality as possible. It is crucial to keep the error rate as low as possible for all reads, but definitely 
under a 1% error rate as this seems to be the threshold where having data of any worse quality has little 
affect on making the alignment significantly more difficult [10].  Zhao et al. have developed a method 
called EDAR (An Efficient Error Detection and Removal Algorithm for Next Generation Sequencing 
Data) which sifts through the read data for sequencing errors and leaves only true errors [21]. The data 



pushed through the EDAR algorithm are significantly better—a 1% error rate can be turned into a 
0.38% error rate [21]. It has been shown that this alone improves the performance of short-read de 
novo aligners [21]. In the past, de novo aligners have always had to trade off accuracy for speed [10]. 
With this approach, the trade-off between speed and accuracy may not be as large as it once was. It may 
be possible to align this more accurate data in less time. 

Since certain de novo aligners tend to be used for certain size genomes, it would be appropriate to 
define what size genomes this de novo aligner is meant to handle. Aiming for the smaller genomes such 
as those of microbials will work in harmony with the ultimate goal of speed and efficiency. Since the 
De Bruijn graph will contain a magnitude of reads, it is appropriate to optimize for specificity rather  
than sensitivity (it is better to avoid false positive alignments rather than false negative alignments).  
Keeping these philosophical tenets in mind, the next step would be to create a De Bruijn graph using k-
mers. The De Bruijn graph should be hashed using the k-mers. “The costliest part of constructing a de 
Bruijn graph consists in hashing all the reads, according to a given word length. This operation offers 
nonetheless an advantageous time complexity compared to a general pairwise alignment of all the 
sequences, especially given the high coverage depths encountered” [11].  The maximum k-mer size 
should be the length of the read, and the minimum k-mer size should be as shown in the equation 
below:

 (length of the read) - floor_function[.1*(length of the read)] 
*Assuming 15x-30x coverage

This formula has been set with the hope that the k-mers will be liberal enough to allow a few 
mismatches but strict enough to prevent the De Bruijn graph from becoming too “connective.” The 
target read size is between 35 and 100 bases, and these numbers are the driving factor in setting the 
above equation. Using this narrow range of k-mers will further drive down the time complexity 
required to complete the graphing and hashing operations.

Due to the initial error corrections, there should theoretically be very few “sink” errors and only a few 
“bulge” errors. This means “chimeric” errors are the only graph errors that pose a threat to an otherwise 
optimized algorithm.  If a reference genome is available, it might be beneficial to use it to quickly  
perform a local alignment on a potential chimeric error. By performing a somewhat liberal local  
alignment on the chimeric read and its flanking sequences (k-bases out on either side), its location can 
be inferred relative to the rest of the assembly (verify that the chimeric error is really a chimeric error)  
while at the same time accounting for SNPs in the genome. If a reference genome is not available for 
this comparative genomics sub-step, then this step would be replaced by an initiative to eliminate all  
potential chimeric errors.

The next big hurdle is dealing with the repetitive sequences. Minimus does not mis-assemble repetitive 
regions of the genome due to the high stringency of its algorithm—something to be strived for. Rather 
than including repetitive sequences with the main De Bruijn graph, making additional mini De Bruijn  
graphs composed of solely repetitive reads will help parallelize and streamline the graph. Relative to  
the main De Bruijn graph, these should be much smaller in size; and when a read must be connected to 
a repetitive sequence, the main De Bruijn graph will connect to a node that represents another De 
Bruijn graph for that repetitive element. This will preserve the topology of the graph while making the 
data even easier to handle computationally and ultimately concatenate.

Overall, this approach builds on the strengths of the other de novo alignment programs while avoiding 
their weaknesses (brought about by analyzing datasets too large or too small) by explicitly defining the 



characteristics of the data the program is designed for. If applicable, there is not any reason why one 
should not try to leverage known reference genome information. Compared to de novo sequencing, it is 
an order of magnitude faster to re-sequence a genome because it does not have to compare every read 
with every other read and find the shortest common subsequence [22]. Even during a de novo 
alignment, a reference genome can be an invaluable source of validation or perhaps even serve as a 
guide. This medley of carefully chosen optimizations results in a powerful, streamlined approach for 
short-read de novo alignment.
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